
 
30th ITS World Congress, Dubai, UAE, 16-20 September 2024 

Paper ID #287  

 

Road accident prediction in south-eastern England: the advantages of using 

connected vehicle data 
 

Thierry Castermans1*, Esteban Hernandez Capel1, Jean-François Meessen1  

1. AISIN Technical Centre Europe, Belgium; Thierry.Castermans@aisin-europe.com 

 

Abstract 

For several years, connected vehicles produce massive amounts of data which represent a gold mine for road 

engineers who are in charge of improving road quality and safety. In this paper, we compare the road accident 

prediction performance level of two analyses: the first one is conducted based on historical road accidents and 

the other is based on harsh braking data only. We quantify the benefits in terms of accuracy and speed when it 

comes to predicting future accidents on a large-scale road network using real data from fleets of connected 

vehicles. We demonstrate that harsh braking clusters allow us to detect precise spots that are dangerous for the 

road users. Finally, we give some perspective for future work.  
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1. Introduction 

1.1 Road safety: proactive vs reactive strategy 

Despite notable progress over time, road safety remains an urgent global issue. As stated by World Health 

Organization, “Every year the lives of approximately 1.19 million people are cut short as a result of a road 

traffic crash. Between 20 and 50 million more people suffer non-fatal injuries, with many incurring a 

disability.” [17]. One of the challenges of casualty reduction is that we are usually working retrospectively. A 

cluster of KSI (Killed or Seriously Injured) crashes will attract the attention of safety engineers. However, to 

improve outcomes, it would be desirable to add a proactive strategy to the “traditional” methods. For more 

than a decade, this goal has motivated many initiatives and research projects. 

The International Road Assessment Programme (iRAP) [14], for example, is dedicated to saving lives by 

eliminating high-risk roads throughout the world. The iRAP methodology provides a simple and objective 

measure of the relative risk associated with road infrastructure for the different road users. This risk is 

calculated by modelling the number of casualties mainly based on geometric characteristics of the road 

infrastructure (road attributes). This approach offers multiple advantages among which the capability to assess 

the effectiveness of a countermeasure brought to the road infrastructure.  

A complementary approach consists in analysing driver behaviour. In the framework of the EUROFOT project 

[2], a reliable incident detection process has been presented as a surrogate measure of crashes and road 
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injuries. CAN-data from vehicles were used to generate safety indicators based on high lateral and 

longitudinal acceleration, the threshold values depending on speed and vehicle type. First experimental studies 

with drivers have shown that harsh events are clearly accumulating on certain hotspots of the road network [3], 

and this can be observed both using data collected by embedded car sensors or low-cost smartphone sensors 

[1]. Several authors have then clearly demonstrated a correlation between accumulation of harsh braking 

events and the occurrence of road crashes. In [10], evidence is given that “harsh braking records can be used 

to support accident modelling, they are a source of much more numerous data than accidents, and this may be 

important in considering changes or trends in accident risk over a much shorter time than for accident 

studies.”. In [9], the analysis results “indicate a strong correlation between hard-braking events and rear-end 

crashes occurring more than 400 ft upstream of an intersection.”. The authors suggest that agencies can use 

new hard-braking data sources to quickly address emerging issues, instead of waiting for 3–5 years of crash 

data. Similar correlation studies have been conducted to show the link between harsh braking activity and the 

safety level in and around road construction projects [5]. Finally, mathematical models have been developed 

to predict locations with high likelihood of accident based on harsh braking historical data [11, 7] and machine 

learning solutions have been proposed to monitor the accident risk in real time [12]. 

 

1.2 Objectives of this study 

The objectives of this study are multiple. They are based on the following observations.  

1. The literature clearly indicates the usefulness of driving behaviour analysis to support accident 

modelling. Most of the time, however, the correlation between high spatial density of harsh braking 

and accident-prone areas was established specifically on long road segments, on the order of 100 

meters. In this paper, we want to show that harsh braking clusters, which are spreading over a (few) 

dozen meters instead of a (few) hundred meters are also valid to predict future accidents. 

2. Although sophisticated accident prediction models have been published, traditional methods aiming at 

improving safety on road networks are still focusing on historical accident data (the reactive strategy 

prevails). In this paper, we want to quantify the benefit of using harsh braking clusters compared to a 

strategy based on historical accidents only. In particular, we want to show how much data is needed to 

predict future accidents. The proposed approach will be validated using a very large-scale road 

network, mixing different driving conditions like urban context, highways, national, and rural roads. 

 

2. Data collection and method 

2.1 Connected car data 

This study leverages data from several fleets of commercial connected vehicles [15] equipped with dedicated 

telematics boxes. Two datasets were generated from those telematics boxes: (i) The trace events, which are 

recorded every 10 seconds and contain the position and the speed of the vehicle. (ii) The harsh events, which 

are recorded whenever the accelerometer signal crosses a pre-defined threshold. As the acceleration is 

measured on 3 axes, it is possible to detect and distinguish harsh acceleration, harsh braking, and harsh 

cornering events (see Figure 1A). For each harsh event, we determined the duration (i.e. the time interval 
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during which the acceleration has crossed the threshold level), the speed at the start and at the end of the event 

and the maximum value (in absolute value) of the acceleration during the event (see Figure 1B).  

 

 

Figure 1 – A) Coordinate system adopted to define the harsh events depending on the direction of the 

accelerometer signal: harsh acceleration (0° ± 45°), harsh braking (180° ± 45°), left cornering (90° ± 45°), and 

right cornering (270° ± 45°). B) Example of a harsh braking event and illustration of the method used to 

determine its duration. 

The data we analysed was recorded in a large region located in the southeast of England, comprising more 

than 60 counties and 100 000 km of roads (see Figure 2). In this area, more than 2 million harsh braking 

events were detected in 6 209 068 vehicle traces analysed between the 1st of January 2022 and the 31st March 

2022. This dataset represents in total 134 million hours of driving. Passenger cars and light commercial 

vehicles (LCV) are comprised in the dataset, which is called “CCD” (Connected Car Dataset) in the following 

of this paper.  

 

 

Figure 2 – The current study focused on an area of more than 60 counties in the Southeast of England. The road 

network length corresponds approximately to 100 000 km. On the left: the red dots depict the harsh braking 

events that were detected during the first 3 months of 2022. On the right: only the clusters of harsh braking that 

were extracted from our analysis are represented (see text for details).  
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2.2 Traffic accident datasets 

Two different road accident datasets were used in this study. The first one contains the 263 455 accidents 

reported by the police between 2017 and 2021 (5 years) in our area of interest and is called the “road accident 

historical dataset”. The second one contains the 50 840 accidents that were reported in the year 2022 only. All 

data are published by the British Department for Transport (DfT) [16]. In most cases, the circumstance of the 

accident is described by means of a series of data items e.g., the location and timing of the accident, the 

number of casualties/fatalities, the type of road users and vehicles involved, the speed limit and the weather 

conditions, to name but a few.    

 

2.3 Connected Car Data processing pipeline 

The full data processing pipeline is illustrated in Figure 3. In a first step, the raw data was map-matched to  

determine the most probable position of the car on the road network based on the raw GPS information. Our 

fast map-matching algorithm [8] was also used to derive the heading of the car, by using the position and 

speed information coming from several successive sampling points. The heading information enables us to 

distinguish on which side of the road the car was rolling.  

After the map-matching step, all the points for which the longitudinal acceleration value was lower than a 

specific threshold were flagged as “harsh braking events”. The threshold was fixed to 0.3 g, which is a value 

compatible with the ones used in other studies [1, 2]. During such braking events, all the objects in the car that 

are not well stowed will fly off the seat.  

  

Figure 3 – Data processing pipeline. The map-matching procedure allows to convert raw GPS data into positions 

on the road network. The clustering algorithm itself is the core of our approach to predict future accident 

locations. The contextualisation step enables us to reject anomalies in the data.   

As a next step in the processing pipeline, a severity factor was computed for each harsh braking event. This 

factor depends both on the acceleration value and the speed of the car at the starting point of the event. A map 

showing the location of the harsh braking events is shown in Figure 2 (on the left). At first sight, this map 

doesn’t carry much useful information. However, applying a spatial clustering technique reveals locations 

characterized by a high density of harsh braking events. The fundamental interest of this step in the data 

processing is that the driving behaviour of different drivers is aggregated. This way, we are not focusing on 

the behaviour of a unique aggressive driver but rather on a collection of similar reflex actions. The spatial 

clustering was carried out using the DBSCAN algorithm [6]. This algorithm detects zones of high density 

based on two input parameters: first, a maximal distance to consider two points as being part of the same 

cluster and, second, a minimum number of points for the cluster to be considered as valid. The adequate 

choice of those parameters was guided both by domain knowledge and generally admitted procedures [13]. 

Each harsh braking cluster is to be considered as a dangerous spot on the road network. In practice, the 

clusters stretch on a zone of a few to several dozens of meters (see Figure 4).  
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Figure 4 – Distribution of the harsh braking (HB) cluster size.  

After the spatial clustering procedure, each harsh braking cluster was enriched with additional variables most 

of the time computed by combining the connected car data set with external databases. The aim of this 

procedure is to contextualise the conditions in which the different braking events occurred. For example, 

knowing the time and the location of the event allows us to determine the position of the sun and consequently 

the lighting conditions (daytime, nighttime, dawn, dusk). The data recorded by local weather stations give 

additional insight regarding the circumstances of the braking as well as the map itself, which indicates if the 

braking happened near a roundabout, a traffic light, or a school, for example. Additionally, the inclusion of 

contextualisation variables enables us to filter spurious events and select the most interesting harsh braking 

clusters. For instance, the distance between the raw and the map-matched GPS coordinates is a metric that 

helps to reject the points being either off-road or on a private domain. 

 

2.4 Road accident prediction and validation 

In this study, the harsh braking events recorded during the first 3 months of the year 2022 were used to predict 

future accidents occurring during the next 9 months of the same year in southeast of England. With this aim, 

the harsh braking (HB) events were clustered (as described in previous section) and the resulting clusters were 

considered as future accident locations (see Figure 5).  

To characterize the performance of this approach in the anticipation of crashes, we defined two different 

metrics:  

1) The prediction rate 𝑟 is the number of accidents that were correctly predicted 𝑁𝑎𝑝 divided by the total 

number of accidents reported by the police in the area of interest 𝑁𝑎𝑡𝑜𝑡: 𝑟 =  
𝑁𝑎𝑝

𝑁𝑎𝑡𝑜𝑡
. 

In short, the prediction rate indicates to what extent the model can predict all the future accidents.  

 

Figure 5 – Time periods used for data analysis and road accident prediction and validation: 5 years of road 

accident historical data, 3 months of harsh braking (HB) data only and 9 months of accident data for validation.  
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2) The conversion rate 𝜂 represents the number of accidents that were correctly predicted 𝑁𝑎𝑝 divided by  

the total number of clusters extracted from the HB dataset 𝑁𝑐𝑡𝑜𝑡: 𝜂 =  
𝑁𝑎𝑝

𝑁𝑐𝑡𝑜𝑡
. 

In practice, a cluster of HB was considered as successfully predicting the location of a future accident if this 

accident was located at maximum 75 meters of the HB cluster centroid. This distance was adopted to consider 

the uncertainty coming both from the GPS data and the location of the accident as reported by the police 

(vehicles involved in a crash may stop far away from the impact point of a collision).  

The conversion rate indicates to what extent the model can predict accidents given a certain number of 

candidate locations.   

To verify that the prediction performance levels of our approach were significant, we developed four different 

baseline models: 

1) Model B0: a random model where the prediction consists in picking 𝑁𝑐𝑡𝑜𝑡 random locations on the 

road network of interest. The question to answer is: does our approach give better results than a pure 

random model? 

2) Model B0 weighted: similar to the model B0 but giving a more important weight to the roads with 

more traffic. In other words, the locations that are randomly picked will have a higher probability of 

being on roads that are busier. 

3) Model B1: a random model where the prediction consists in picking 𝑁𝑐𝑡𝑜𝑡 random locations in the 

road accident historical dataset. Here the idea is to discover if a given number of HB clusters contains 

more information (or not) than the same number of locations taken from the past accidents.  

4) Model B2: a model using all the locations in the road accident historical dataset. This will complete 

our analysis.  

 

The results of the different approaches are presented and discussed in the following section.  

 

3. Results and discussion 

The main figures to consider here are the following: 

• During the validation period (April to December 2022), 38 738 road accidents were reported by the 

police. These are the target for our prediction task. Among those accidents, 30 719 (79%) caused 

slight injuries, 7633 (20%) serious injuries, and 386 (1%) were fatal.   

• A total of 15 303 clusters of HB were extracted from the CCD dataset. These locations represent 

candidates for future accidents according to our approach.  

• Finally, 263 455 road accidents were reported during the 5 years preceding 2022. These locations 

represent candidates for future accidents according to the model B2.  

 

3.1 Performance of the model using the harsh braking clusters 

It turns out that the HB clusters correctly predicted 3161 accidents (out of the 38 738), 2638 (83%) where 

people were slightly injured, 507 (16%) where people were severely injured and 16 (0.5%) which were fatal. 
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This leads to a prediction rate of 8.3%. As 15 303 clusters were used to make the prediction, the conversion 

rate is 21%.  

 

3.2 Performance of the models B0 and B0 weighted 

The performance of the model B0 can be determined using the binomial law. In practice, we divided the road 

network of our area of interest in 𝑁𝑏𝑖𝑛𝑠 small road segments of 20 meters. We then attributed a “status” to 

each road segment: 0 if no accident occurred during the validation period, and 1 if an accident did occur. At 

this stage, the problem is to compute the probability that attributing randomly the status 1 to 𝑁𝑐𝑡𝑜𝑡 road 

segments will allow to predict the same number of accidents as our proposed method based on the HB 

clusters. 

In practice, we used the binomial law to compute this probability. Indeed, this law allows to determine the 

probability 𝑃(𝑋 = 𝑘) to get 𝑘 “success” after realizing a number 𝑛 of independent experiments having 

only 2 possible outcomes (“success” or “failure”), and for which the probability 𝑝 of “success” is known and 

constant: 𝑃(𝑋 = 𝑘) =  (
𝑛
𝑘

) 𝑝𝑘(1 − 𝑝)𝑛−𝑘, with (
𝑛
𝑘

) =  
𝑛!

𝑘!(𝑛−𝑘)!
. In our problem, we can identify that the 

probability 𝑝 of “success” is the number of accidents that occurred during the validation period divided by 

the number of road segments 𝑁𝑏𝑖𝑛𝑠; 𝑛 corresponds to the number of clusters 𝑁𝑐𝑡𝑜𝑡; 𝑘 corresponds to the 

number of accidents that were correctly predicted based on the HB clusters.  

 

We computed 𝑃(𝑋 ≥ 𝑘) = 1 −  ∑ 𝑃(𝑋 = 𝑖)𝑘
𝑖=0 , which is the probability to predict at least the same number 

of accidents as our proposed method and obtained 0.007, a value close to zero, meaning that our proposed 

method does not lead to results by chance.  

 

Figure 6 – On the left: To determine the model B1 prediction performance, we ran a Monte Carlo experiment 

10 000 times. For each experiment, a sample of 𝑵𝒄𝒕𝒐𝒕 locations were picked randomly in the historical road 

accident dataset. We then determined the number of accidents (belonging to the validation period) that were 

correctly detected and hence computed the prediction and conversion rates. The average performance of the 

model is listed in Table 1. On the right: Number of accidents detected with the HB and/or B2 model. 
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The model B0 considers implicitly that the traffic is the same on each road, which is obviously not true. We 

thus designed a model B0 weighted by the traffic values on each road segment. Those traffic values were 

determined by counting how many connected vehicles drove on each 20-meter road segment. The length of 

each of these road segments was then multiplied by the corresponding traffic values so that the weights of 

busier road segments were higher accordingly. Here also, the binomial probability was negligible (0.014), 

meaning that weighting each road segment by the traffic value did not change the conclusion obtained with 

the model B0.  

 

3.3 Performance of the models B1 and B2 

The performance levels of the models B1 (see Figure 6 on the left) and B2 are summarised in Table 1, as well 

as the performance reached by our method based on HB. We see that the best prediction rate is obtained by the 

model B2. However, the comparison seems not so fair, given that the model B2 leverages 263 455 points 

collected for 5 years, while our approach was based on 15 303 points acquired for 3 months only. This is the 

reason why we designed the model B1, using the same number of points as our approach. We can see that the 

average performance of this model B1 is the lowest in terms of prediction rate. Using the same number of 

points as B1, our approach leads to a prediction rate improved by 22%. 

Additionally, our approach gives the best conversion rate: 21% of the HB clusters turn out to become real 

accidents in the 9 following months. This represents an improvement by a factor 3 compared to the conversion 

rate reached by the model B2. This means that utilising the HB clusters allows to predict much more quickly 

the future accidents than relying on the historical road accidents. Also, the quantity of useful information in 

HB clusters is bigger than in historical road accidents.  

 

Table 1 – Comparison of the performance levels of the different models. 38 738 road accidents were reported 

during the validation period.  

Model type Predicted Using Prediction rate 𝒓 Conversion rate 𝜼 

HB Clusters 3161 accidents 15 303 points 8.2% 21% 

B1 (avg) 2602 accidents 15 303 points 6.7% 17% 

B2 17097 accidents 263 455 points 44% 6.5% 

 

3.4 Limitations and future work 

This study relies on a very large-scale dataset covering a substantial region of England, but it also faces some 

challenges and limitations. Future research could include the investigation of differences across several 

regions, countries or driving contexts (on highways, national roads, secondary roads and in the city centre). 

Also, other vehicle types could be considered, like trucks or heavy good vehicles. The study could also be 

extended using other harsh events, like harsh acceleration. Indeed, harsh acceleration can reflect safety issues, 

as it can show erratic driving behaviour or situations where a driver is trying to quickly escape a possible 

crash site. Harsh cornering might also be considered, as an indicator of dangerous driving in curves or 

junctions. 
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In this study, we equally considered all the HB clusters as future accident locations to demonstrate in a simple 

way the advantages of this approach compared to the traditional reactive approach. In a future work, it will be 

useful to further enhance our prediction results by estimating the probability of crash of every cluster based on 

HB contextualisation variables like speed, speed difference, light and weather conditions, road geometry 

(presence of a junction or a sharp curve), the proximity of vulnerable road users on a cycle lane or near a 

school or a bus stop, for example. Finally, the temporal aspect of the harsh event clustering should be 

investigated as well to give further insight at each dangerous location.   

 

4. Conclusion 

One of the main goals of this study was to compare the accident prediction efficiency of two simple methods: 

(i) the traditional approach, which considers the locations of historic accidents as the most dangerous hotspots 

of the road network, and (ii) an approach which considers the clusters of harsh braking events as future 

accident location candidates. To conduct our analysis, we have used a massive set of data from connected 

vehicles driving over a large-scale road network in southeast of England, including all sorts of driving 

conditions and road types. In addition to this, we used in total a dataset of 6 years of validated accident reports. 

Our results indicate that harsh braking events bring comparatively more information than past accidents. 

Clusters of harsh braking bring an improvement of 22% in prediction rate compared to an equivalent number 

of historical accident locations. Additionally, we have shown that using harsh braking clusters allows a much 

quicker detection of future accidents. Moreover, the HB clusters enabled us to detect accidents that could not 

be predicted even using 5 years of historical road accident data. Finally, we have demonstrated that harsh 

braking clusters, which are spreading over a (few) dozen meters only are sufficient to predict future accidents.  

Future work should aim at combining driver behaviour analysis with road attributes analysis (following the 

iRAP methodology) to further enhance our accident risk prediction capabilities. Road managers will then have 

at hand better tools to improve road infrastructure and make better informed, risk-based decisions. 
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